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A continuous cracked beam vibration theory is used for the prediction of changes in
transverse vibration of a simply supported beam with a breathing crack. The equation of
motion and the boundary conditions of the cracked beam considered as a one-dimensional
continuum were used. The eigenfrequency changes due to a breathing edge-crack are shown
to depend on the bi-linear character of the system. The associated linear problems are solved
over their respective domains of de"nition and the solutions are matched through the initial
conditions. The changes in vibration frequencies for a fatigue-breathing crack are smaller
than the ones caused by open cracks. The method has been tested for the evaluation of the
lowest natural frequency of lateral vibration for beams with a single-edge breathing crack.
Experimental results from aluminium beams with fatigue cracks are used for comparison
with the analytical results.
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1. STATE OF THE ART

The presence of a crack in a structural member introduces a local #exibility that a!ects its
dynamic response. Moreover, the crack will open and close in time depending on the
loading conditions and vibration amplitude. The changes in dynamic characteristics can be
measured and lead to an identi"cation of the structural changes, which eventually might
alead to the detection of a structural #aw. A wealth of analytical, numerical and
experimental investigations now exists [1]. The local #exibility of a crack has been widely
used in the past 15 years for vibration analysis of cracked beams. This spring hinge model
was combined with the fracture mechanics results for crack identi"cation in various
structures [2]. The theoretical shortcomings of the linear spring model for the crack in high
frequencies put a limitation on the development of the dynamic response theory of the
cracked structural elements. On the other hand, most of the researchers assumed in their
work that the crack in a structural element is open and remains open during vibration. Such
as assumption was made to avoid the complexities that resulted from the non-linear
characteristics presented by introducing a breathing crack.
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During the vibration period of a cracked structural member, the crack does not remain
always open. The static de#ection due to some loading component on the cracked beam
(residual loads, body weight of a structure, etc.) combined with the vibration e!ect may
cause the crack to open at all times, or open and close regularly, or completely close
depending on various loads at a given time. If the static de#ection due to some loading
component on the beam (dead loads, own weight, etc.) is larger than the vibration
amplitudes, then the crack remains open all the time, or opens and closes regularly and the
problem is linear. If the static de#ection is small, then the crack will open and close in time
depending on the vibration amplitude. In this case the system is non-linear.

Due to the lack of a systematic theory regarding the breathing crack, it is di$cult to
interpret the experimental results. The e!ect of the breathing crack in the vibration response
of cracked structural members had been recognized long ago. Kirmsher in 1944 [3]
reported that if a crack in a concrete beam is "lled with dirt or crystallized material, or is
narrow enough so that interference occurs, the e!ect on the natural frequency is the same as
that of a crack of lesser depth. This observation was the basis for a more systematic
investigation of the e!ects of opening and closing of cracks.

Actis and Dimarogonas [4], used the "nite element method to study the simply
supported cracked beam. The crack was assumed to be a breathing crack. They assumed
that when the bending moment changes sign, the crack changes from open to closed, or
from closed to open. When the crack is open, an additional sti!ness ![dK] would be
introduced. Thus, the linear algebraic equation of the uncracked structural member

[M]Mu( N#[K]MuN"MFN

would change to

[M]Mu( N#[K!dK]MuN"MFN ,

where [M] is the mass matrix, [K] is the sti!ness matrix, MuN is the displacement vector and
MFN is the load vector.

The words &&spring hinge model'' used in the literature refer to the linear spring model,
because, for a given crack depth, the equivalent spring constant remains the same for both
directions of loading. In the case of the breathing crack, a crack that opens and closes
during vibration, the spring constant appears to be di!erent for open and closed cracks. The
crack behaves as a bi-linear spring. Additionally, the dynamic response of the bi-modulus
material also behaves like a bilinear spring.

Ambartsumyan and Khachatryan [5] developed a di!erent-moduli theory of elasticity.
Khachatryan [6] applied it to the longitudinal vibration of prismatic bars made
of di!erent-moduli materials. Lenkov and Tolokonnikov [7] studied the axisymmetric
strains in materials with di!erent moduli. Green and Mkrtichian [8], Paolinelis
et al. [9], Bert and Kumar [10], Tran and Bert [11], Reddy [12] and Doong and
Chen [13] also referred to a bimodulus material because of its potential application in
composite materials.

Ibrahim et al. [14] presented a bondgraph technique that models the crack as a torsional
spring with two spring constants, one when it is open, and the other when it is closed.
A numerical simulation procedure is used for the prediction of the non-linear behaviour of
a cantilever beam with a fatigue crack located near its root.

Qian et al. [15] investigated the e!ects of an opening and closing crack on the dynamic
behaviour of a cantilever beam using a "nite element model for the cracked member.
A numerical method and Hermitian interpolation was introduced for the solution of the
resulting non-linear equations of motion.
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Bayly [16] and Happawana et al. [17] studied the e!ects of the magnitude of
perturbations (disorders) on the localization of modal shapes for non-linear vibrating
systems. By applying the regular perturbation technique to the characteristic equation of
the system, they obtained algebraic expressions for the eigenvalues as a power series in the
small parameter or perturbation with acceptable accuracy.

Chu and Shen [18] presented an approximate analytical technique to predict the
superharmonic components resulting from low-frequency excitation of an undamped
bilinear oscillator. The presence of superharmonic components in the Fourier spectrum has
been proposed as an indicator of the discontinuity in sti!ness resulting from a breathing
crack in the structural element.

Shen and Chu [19] investigated the existence of fatigue cracks by exciting the structures
at di!erent frequencies and using a numerical study for the response analysis.

Chondros et al. [20] developed a continuous cracked beam vibration theory for the
lateral vibration of cracked Euler}Bernoulli beams with single or double-edge cracks. This
continuous cracked beam vibration theory is used for the prediction of the dynamic
response of a simply supported beam with open surface cracks.

The results of two independent evaluations of the lowest natural frequency of lateral
vibrations of a beam with a single-edge surface crack are reported: a numerical solution
based on the continuous crack #exibility vibration theory, and an asymptotic solution for
the breathing crack developed here. The above analytical results were correlated with
experimental results obtained on aluminium beams with open fatigue cracks and breathing
cracks respectively. Numerical and experimental results show a substantial variation of the
frequency changes for a cracked beam relative to an open-edge crack, with changes
computed with the analytical method for a breathing crack.

2. THE EQUATION OF MOTION

A simply supported Euler}Bernoulli beam of length ¸
0

with an open single transverse
surface crack is shown in Figure 1. Let the displacement components be denoted by u

i
, the

strain components by c
ij

and the stress components by p
ij

with i, j "1,2,3 referring to
Cartesian axes x, y, z. Let p

i
be the momentum such that ¹
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variational principle, Christides and Barr [21] Chondros et al. [20], was introduced in the
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where,=(c
ij
) is the strain energy density function, o is the density of the material. F

i
, g

i
and

u
i

are, respectively, the body forces, the surface traction and the surface displacement.
Moreover, < is the total volume of the solid and Sg and S

u
are its external surfaces. The

overbar denotes the prescribed values of the surface traction and the surface displacement.



Figure 1. Geometry of a simply supported beam with an edge crack.
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The prescribed surface tractions g
i

are applied over the surface Sg and the prescribed
displacements u

i
are over S

u
. Together, Sg and S

u
make up the total surface of the solid. The

di!erentiation with respect to time (L/Lt) is indicated by a dot. Commas in the subscripts
indicate di!erentiation with respect to Cartesian axes.

The change in stress, strain and displacement distributions due to the crack will be
expressed by a crack disturbance function for the axial displacement f (x, z) introduced in
reference [20].

For a uniform beam in the absence of body forces, the introduction of the displacement
disturbance function f (x, z) will lead to
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The term p
xz

is introduced for the lateral loading of the beam. Following the method
introduced in references [20, 21] equations (2) can now be substituted into the general
variational equation (1) and independent variations of the unknowns w, P, S and ¹ can be
considered. The above variations considered one by one [20] lead to the general equation of
motion
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7
w( "0, (3)

where E is the Young's modulus of elasticity, Q
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The displacement disturbance function f (x, z) is calculated in reference [20] as

f"!6n (1!l2)h2 U
I
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0
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0
#lh2/4),

where

U
I
(a)"0)6272a2!1)04533a3#4)5948a4!9)9736a5#20)2948a6!33)0351a7

#47)1063a8!40)7556a9#19)6a10 and a"a/h.

Upon denoting by uN , XM the prescribed displacements and the prescribed external forces
respectively, the boundary conditions appropriate to the equation of motion (3) for a simply
supported beam [20] are

wN "0, XM "0 at x"0 and wN "0, XM "0 at x"¸
0
. (4)
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For a cracked beam with a rectangular cross-section of height h and width b (see
Figure 1), the equation of motion (3) for an open crack [20] changes to

c2
0
[(I

7
w)iv]#I

7
w( "0, (5)

where c2
0
"EI/(oA) is a material constant, and I the appropriate second moment of

area.
From equation (5) it can be seen that the displacement disturbance factor f (x, z) a!ects

directly the displacement w(x, t) through the function I
7
(x). The appropriate boundary

conditions and initial conditions will be used to solve the last di!erential equation (5).
If cracks are absent from the beam, the functions f, I

2
, I
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, I
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, Q
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, Q
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are zero, Q
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unity and the function I
7

is replaced by area A. The equation of motion (3) will reduce to

EIL4w (x, t)/Lx4#AoL2w(x, t)/Lt2"0. (6)

3. NATURAL FREQUENCIES-EDGE CRACK

Let a beam as shown in Figure 1, bent by a pair of symmetrical bending moments
M applied at both ends at an instant of time t

0
"0, be suddenly released and perform

vibration freely. The boundary conditions obtained from equations (4) are

w D
x/0

"0, L2w/Lx2D
x/0

"0, wD
x/L0

"0, L2w/Lx2D
x/L0

"0. (7)

Following the method of separation of variables, the general solution of equation (5) can
be written as

w(x, t)"=(x) ¹(t), (8)

where ¹(t) is a function of time. By this form of the solution it is assumed that every point of
the beam has harmonic vibration of circular frequency u and amplitude=(x).

Substituting the above solution, equation (8), into the partial di!erential equation (5), one
obtains

c2
0GL4C

I
7
(x)=(x)

Lx4 DH ¹(t)"[I
7
(x)=(x)]

L2¹
Lt2

"0. (9)

This partial di!erential equation for the #exural vibration of cracked beams can be broken
up into two ordinary di!erential equations,

[I
7
(x)=(x)]iv#(u*

n
/c

0
)2[I

7
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n
¹"0, (10, 11)

where u*
n

are the natural frequencies of the cracked beam.
Equation (10) is the di!erential equation for the natural modes of vibration of the beam

considered as a continuous system. The solution of the latter equation was investigated in
reference [20] for the case of a cracked beam with an open crack. The solution was found
to be

=(x)"/(x) [A
n
sin(b*

n
x)#D

n
sinh (b*

n
x)], (12)

where u*
n
"c

0
b*2
n

are the natural frequencies of the cracked beam, A
n
and D

n
are constants,

and /(x)"1/I
7
(x) is the shape disturbance function associated with the crack disturbance

function f (x, z) [20].
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The boundary conditions at x"0 and ¸
0
, equations (4), yield the characteristic equation
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¸
0
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This implicit natural frequency equation (13) is solved directly for an exact solution
b*
n

through a numerical method and the results are shown in Figure 3 of section 4.

4. BREATHING CRACK

For the beam with a breathing crack it is assumed in this investigation that this is
a piecewise linear system. This bilinear-type breathing crack has only two states, either fully
open or fully closed, as shown in Figure 2, and the frequency does not depend on amplitude.
It is also assumed that the transition period from open to closed crack occurs at times when
the beam returns to its undeformed shape. Due to the bi-linear character of the system there
is no single frequency of oscillation. Instead, there is a dominant frequency of oscillation,
which is periodic and depends on the breathing crack behaviour. The solution of the second
ordinary di!erential equation (11) will be

¹
n
"M*

n
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n
t)#M

n
cos(u*

n
t) , (14)

where M*
n

and M
n

are constants determined by the initial conditions.
By combining the solutions (12) and (14) of the two equations, the general solution of the

partial di!erential equation (5) can be written in the form
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The frequency b*
n

has the form

b*4
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/c2
0
. (16)

A
n
and D

n
can be found from equation (12), and constants M*

n
and M

n
can be determined

from the initial conditions.
Figure 2. Transverse motion of a simply supported prismatic beam with a single-edge crack at mid-span initially
bent to its "rst mode.
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If the crack is not present, equation (15) of the cracked beam will change to
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of the uncracked beam, where the parameters A
cn
, D

cn
, M*

n
, and M

n
can be computed from

the initial conditions.
Since the solution of the bi-linear vibration of the cracked beam depends on the initial

conditions, di!erent initial conditions will give di!erent results. One type of initial
condition, a cracked beam initially bent to its "rst mode, will be discussed here.

Consider a beam with a crack initially opened by bending it to its "rst mode at time
t
0
"0 and then release it (see Figure 2). The initial conditions are

w D
t/0

"A
1
/(x) sin(b*

1
x), Lw/LtD

t/0
"0, (18)

where A
1

is a known constant. By applying the initial conditions in equation (13) for the
beam with an open crack, the constant parameters are determined as

A
1
O0, A

n
"0, (nO1), D

n
"0, M

1
"1, M

n
"0, (nO1), M*

n
"0. (19)

Higher frequencies decay faster than lower frequencies and this is supported by
experimental results which show that after a few cycles the fundamental frequency is
dominant. Then, for the fundamental mode of vibration, equation (15) is reduced to

w(x, t)"A
1
/(x) sin(b*

1
x) cos (u*

1
t) , (t

0
(t(t

1
). (20)

At the time t
1

(see Figure 2), the crack is expected to close: that is,

w(x, t
1
)"0. (21)

Then, equation (20) will yield
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1
. At the time instant t

1
, the particles of the beam move with velocity
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(x) that can be also determined from equation (20) as
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After the time instant t
1
, the crack will close and stay closed. The previous initial

conditions for the open crack are no longer valid. They will change to

w D
t/t1

"0,
Lw

Lt K
t/t1

"!d
2
(x) (24)

of the closing crack (see Figure 2). Also, the solution (15) of the open cracked beam is no
longer valid. The solution, equation (17), of the uncracked beam will be used instead.

Substituting the "rst initial condition w(x, t
1
)"0 into equation (15) yields M*

n
"0.

Constant M
n
can be determined by applying the second initial condition of equations (18) in

equation (17). Again, upon considering the dominating fundamental mode of vibration at
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the time instant t
2
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1
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At the time instant t
2
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1
#Dt, the motion of the particles is reversed in the opposite

direction. At the time t
3
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1
#2Dt, the displacement of all points of the beam becomes

zero, i.e., w(x, t
3
)"0 and the beam returns to its non-deformed state. The velocity of the

particles of the beam at the time t
3

is wR D(x, t
3
)"d

2
(x). Starting at the time instant t

3
the

beam will be bent and the crack will reopen again.
The period of vibration for the breathing cracked beam is

¹"2(Dt*#Dt). (26)

Consequently, the frequency ratio is
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where u
b
is the frequency of the breathing crack, u

1
is the frequency of the closed crack and

u*
1

is the frequency of the open crack. Figure 3 shows the lowest natural frequency ratio
u

b
/u

1
for the transverse vibration of a simply supported beam with a surface breathing

crack at mid-span, versus the crack depth ratio a"a/h.

5. EXPERIMENTAL EVIDENCE

Prismatic beams made of aluminium of rectangular cross-section 7]23 mm and length
235 mm were prepared. Material properties are Young's modulus of elasticity
E"7)2 E10N/m2 and material density 2800 kg/m3. At mid-span, a sharp notch was
introduced perpendicular to the longitudinal axis and the longer dimension of the
cross-section. Then, the beam was placed on a shaker table, with one end "xed and the other
free and it was vibrated at its lowest bending natural frequency for the purpose of initiating
and propagating a fatigue crack. Di!erent specimens were vibrated at di!erent numbers of
cycles so that di!erent crack lengths were obtained. Thus, 30 specimens were prepared with
crack depths varying from 5 to 60% of the cross-section height.

Then, each beam was simply supported at the two ends by sharp knife-edge steel supports
to assure free #exural motion. A small accelerometer of mass 1 g was "xed at mid-span on
the surface of the beam opposite to the crack. The vibration frequency was calculated by
measuring the time that elapsed for 50 cycles of vibration. Moreover, an FFT transform was
performed at the stored signal for an independent measurement of the #exural natural
frequencies. The lowest natural frequency of the short aluminium beams was around 2 kHz.
The 100 kHz sampling rate two-channel A/D converter used gave good accuracy for the
fundamental frequency measurement.

Two sets of experiments were carried out. First, a series of tests were performed on the
specimens with a gradually increasing load applied through a spring, opposite to the crack,



Figure 3. Lowest transverse natural frequency ratio for a simply supported beam with a surface crack at
mid-span, versus the crack depth ratio a"a/h. Analytical results: (a) continuous crack model, equation (13); (b)
breathing crack, equation (28). Experimental results: s open crack; d, breathing crack.
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to ensure the transition of the beam dynamic behaviour from that with a closed crack to
that with an open crack. Experimental results were in agreement with the breathing crack
behaviour, equation (28). Measurements were taken for crack depths up to 40% of the
width height, since for larger depths the cracks were partly open due to the crack formation
procedure followed. Then, the cracks were forced open and #exural vibration tests were
repeated. Experimental results comply with the open crack theory, equation (13).
Measurements with open cracks were taken for crack depths up to 60% of the width height,
which is of importance for engineering applications. For both sets of measurements the
experimental points are averages from tests but the spread of frequency measurements
about the points was very small.

6. CONCLUSIONS

Most of the researchers in the literature cited assumed in their work that the crack in
a structural element is open and remains open during vibration. This assumption was made
to avoid the complexities arising from the non-linear characteristics presented by
introducing a breathing crack. With the consistent one-dimensional cracked beam theory
used, an analytical approach to the bi-linear dynamic problem of the cracked beam has
been developed here. The crack was modelled as a continuous #exibility by using the
displacement "eld in the vicinity of the crack, found with fracture mechanics methods. The
e!ect of the breathing crack on the natural frequencies of vibration of a simply supported
beam was studied by solving piecewise linear equations and appropriate continuity
conditions. The method developed here leads directly to a new di!erential equation and
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boundary conditions for a continuous cracked Euler}Bernoulli beam with a breathing
crack.

The method has been tested for the evaluation of the lowest natural frequency of lateral
vibration for beams with a single-edge breathing crack. For the analysis, the method for the
breathing crack developed here was compared with the continuous cracked beam vibration
theory for open crack vibration analysis. Experimental results were used to validate the
theory developed.

The frequency ratio u*
1
/u

1
has been calculated analytically (a) with the continuous crack

model, equation (13), and (b) with the breathing crack model, equation (28). Experimental data
for an aluminium beam of length 0)235 m, cross-section width 0)006 m, cross-section height
0)0254 m, E"2.06E11 N/m2, material density 2800 kg/m3 and Poisson's ratio 0)35, with
a breathing and an open crack at mid-span are in good agreement with the analytical results.

The results from the preceding analysis show that in the absence of su$cient preload,
fatigue cracks behave as breathing cracks, resulting in a smaller drop in natural frequencies
than an open-crack model predicts. This is an important factor in applications of the
method for crack identi"cation. According to the preloading conditions of the structure
under investigation, either the open-crack model or the breathing crack model must be
identi"ed. It is evident that using an open-crack model assumption to interpret vibration
measurements for a fatigue-breathing crack will lead to the incorrect conclusion that the
crack severity is smaller than what it really is.
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APPENDIX A: NOMENCLATURE

a crack depth
A beam cross-sectional area
b cross-section width
c local crack #exibility
c
0

material constant
E Young's modulus of elasticity
e "(c

XX
#c

YY
#c

ZZ
) volume dilatation

f (x, z) crack disturbance function
F
i

body forces
g
i

surface traction
h cross-section height
I cross-sectional area moment of inertia
¸ length of beam
¸
0

distance from crack tip
M bending moment
p
i

momentum
p(x, t) velocity "eld
Sg , Su

external surfaces
S(x, t) strain function
¹(x, t) stress function
¹

m
kinetic energy density

u
i

displacement "eld components
;

T
strain energy due to crack

< total volume of the solid
=(c

ij
) strain energy density function

w(x, t) lateral displacement function
w
0

lateral displacement of the uncracked beam
w* lateral displacement due to crack
a crack ratio a/h
b non-dimensional crack location
b*
n

cracked beam natural frequency parameter
c
ij

strain tensor components
d
ij

Kronecker's delta
l Poisson's ratio
o material density
p
ij

stress tensor components
/(x) mode disturbance function
u

n
natural frequencies of the uncracked beam

u*
n

natural frequencies of the cracked beam
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